N_SHL exceeds MXTSK

Find answers or ask questions regarding Dalton calculations.
Please upload an output file showing the problem, if applicable.
(It is not necessary to upload input files, they can be found in the output file.)

Post Reply
kuyen
Posts: 7
Joined: 02 Jun 2014, 03:52
First name(s): Xiao
Last name(s): Ma
Affiliation: Mr.
Country: China

N_SHL exceeds MXTSK

Post by kuyen » 13 Aug 2014, 21:34

what does this error mean ? How do I fix it ? Thank you.

Xiao

erik
Posts: 14
Joined: 12 Dec 2013, 12:43
First name(s): Erik
Middle name(s): Donovan
Last name(s): Hedegård
Affiliation: University of Southern Denmark
Country: Denmark
Contact:

Re: N_SHL exceeds MXTSK

Post by erik » 14 Aug 2014, 09:39

Hi,

DALTON has a few hard-wired variables, that you sometimes hit when you are running large calculations (which I assume you do here).
You can fix this error by going to the file

/DALTON/include/incore.h

and set MXTSK higher...

I cannot tell you what your MXTSK should be as you did not post any output or other details. Please do so next time(!). The current value should be in the output the same place where you see the error.

With best regards
Erik

kuyen
Posts: 7
Joined: 02 Jun 2014, 03:52
First name(s): Xiao
Last name(s): Ma
Affiliation: Mr.
Country: China

Re: N_SHL exceeds MXTSK

Post by kuyen » 14 Aug 2014, 15:29

Erik

This is part of the output file....Do you think if there's other way instead of modifying incore.h ?


>>>>> DIIS optimization of Hartree-Fock <<<<<

C1-DIIS algorithm; max error vectors = 10

Iter Total energy Error norm Delta(E) DIIS dim.
-----------------------------------------------------------------------------
1 Screening settings (-IFTHRS, DIFDEN) -20 F
Received quit because N_SHL exceeds MXTSK 281626 281625

arnfinn
Posts: 231
Joined: 28 Aug 2013, 08:02
First name(s): Arnfinn
Middle name(s): Hykkerud
Last name(s): Steindal
Affiliation: UiT
Country: Norway
Location: UiT The Arctic University of Norway

Re: N_SHL exceeds MXTSK

Post by arnfinn » 15 Aug 2014, 07:54

kuyen wrote: Do you think if there's other way instead of modifying incore.h ?
Very hard to know without more information about your calculation. If you include the complete output from your calculation, which includes the input files, it is much easier for us to find out why you hit this wall and maybe also what you can do to avoid it. Are you running Dalton2013?

kuyen
Posts: 7
Joined: 02 Jun 2014, 03:52
First name(s): Xiao
Last name(s): Ma
Affiliation: Mr.
Country: China

Re: N_SHL exceeds MXTSK

Post by kuyen » 15 Aug 2014, 22:56

I'm running Dalton 2011.

INPUT:

BASIS
6-31G*
2BrCHO test calculation
using the 6-31G basis
Atomtypes=4 Nosymmetry Angstrom
Charge=6.0 Atoms=19
C -3.38687700 0.89433800 0.10143900
C -3.45424900 -0.51815800 -0.08259200
C -2.31618400 -1.31241800 -0.16825600
C -1.06270900 -0.67715900 -0.07933700
C -0.99225500 0.73383200 0.10562700
C -2.13516100 1.52581300 0.19315100
C -4.69719600 1.48694900 0.17293900
C -5.69460100 0.57639600 0.03816100
C 0.23615600 -1.26248400 -0.15673700
C 1.26378800 -0.35915900 -0.02665100
C 2.67632900 -0.66562600 -0.06668000
C 4.88077200 -1.93800400 -0.22479400
C 5.03785100 -0.59756600 -0.07168700
C 3.79928000 0.12423100 0.01905700
C -2.47774600 -3.44656300 0.83295700
C -1.91601900 3.66567000 -0.78973300
C 4.14365700 1.56963000 0.18138600
C 5.64442000 1.60753400 0.17409200
C 6.14510700 0.36088800 0.02905200
Charge=1.0 Atoms=12
H -4.86010400 2.54652500 0.32983900
H -6.76093800 0.76176500 0.05557800
H 0.38819300 -2.32324900 -0.32140400
H 5.62836900 -2.71490400 -0.31959000
H -2.55145800 -4.48959500 0.51813600
H -1.57812600 -3.30952800 1.44579300
H -3.36185300 -3.17880700 1.42378900
H -1.85025200 4.70587400 -0.46434800
H -1.00690900 3.39823300 -1.34095600
H -2.78804800 3.53802900 -1.44352800
H 6.19707600 2.53344500 0.27557600
H 7.19466800 0.08978200 -0.00949100
Charge=8.0 Atoms=3
O -2.05050500 2.88300900 0.40414900
O -2.40443200 -2.67072700 -0.37069800
O 3.39719100 2.52844700 0.29709600
Charge=16.0 Atoms=3
S -5.12271500 -1.06720200 -0.18799700
S 0.66613700 1.29990200 0.20740000
S 3.18440000 -2.36346600 -0.26203600

**DALTON INPUT
.RUN RESPONS
.DIRECT
**WAVE FUNCTIONS
.DFT
B3LYP
**RESPONS
*LINEAR
.DIPLEN
.SINGLE RESIDUE
.ROOTS
1
**END OF INPUT


OUTPUT:
****************************************************************************
*************** DALTON2011 - An electronic structure program ***************
****************************************************************************

This is output from DALTON Release Dalton2011 (Rev. 0, July 2011)
----------------------------------------------------------------------------
NOTE:

DALTON is an experimental code for the evaluation of molecular
properties using (MC)SCF, DFT, CI, and CC wave functions.
The authors accept no responsibility for the performance of
the code or for the correctness of the results.

The code (in whole or part) is provided under a licence and
is not to be reproduced for further distribution without
the written permission of the authors or their representatives.

See the home page "http://daltonprogram.org" for further information.

If results obtained with this code are published,
an appropriate citation would be:

"Dalton, a molecular electronic structure program,
Release Dalton2011 (2011), see http://daltonprogram.org"
----------------------------------------------------------------------------

Authors in alphabetical order (major contribution(s) in parenthesis):

Celestino Angeli, University of Ferrara, Italy (NEVPT2)
Keld L. Bak, UNI-C, Denmark (AOSOPPA, non-adiabatic coupling, magnetic properties)
Vebjoern Bakken, University of Oslo, Norway (DALTON; geometry optimizer, symmetry detection)
Gao Bin, University of Tromsoe, Norway (ECP with Gen1Int)
Ove Christiansen, Aarhus University, Denmark (CC module)
Renzo Cimiraglia, University of Ferrara, Italy (NEVPT2)
Sonia Coriani, University of Trieste, Italy (CC module, MCD in RESPONS)
Paal Dahle, University of Oslo, Norway (Parallelization)
Erik K. Dalskov, UNI-C, Denmark (SOPPA)
Thomas Enevoldsen, SDU - Odense University, Denmark (SOPPA)
Berta Fernandez, U. of Santiago de Compostela, Spain (doublet spin, ESR in RESPONS)
Lara Ferrighi, Aarhus University, Denmark (PCM Cubic response)
Heike Fliegl, University of Helsinki, Finland (CCSD(R12))
Luca Frediani, University of Tromsoe, Norway (PCM)
Christof Haettig, Ruhr University Bochum, Germany (CC module)
Kasper Hald, Aarhus University, Denmark (CC module)
Asger Halkier, Aarhus University, Denmark (CC module)
Hanne Heiberg, University of Oslo, Norway (geometry analysis, selected one-electron integrals)
Trygve Helgaker, University of Oslo, Norway (DALTON; ABACUS, ERI, DFT modules, London, and much more)
Hinne Hettema, University of Auckland, New Zealand (quadratic response in RESPONS; SIRIUS supersymmetry)
Brano Jansik University of Aarhus Denmark (DFT cubic response)
Hans Joergen Aa. Jensen, Univ. of Southern Denmark, Denmark (DALTON; SIRIUS, RESPONS, ABACUS modules, London, and much more)
Dan Jonsson, University of Tromsoe, Norway (cubic response in RESPONS module)
Poul Joergensen, Aarhus University, Denmark (RESPONS, ABACUS, and CC modules)
Sheela Kirpekar, SDU - Odense University, Denmark (Mass-velocity & Darwin integrals)
Wim Klopper, University of Karlsruhe, Germany (R12 code in CC, SIRIUS, and ABACUS modules)
Stefan Knecht, Univ. of Southern Denmark, Denmark (Parallel CI)
Rika Kobayashi, ANU Supercomputer Facility, Australia (DIIS in CC, London in MCSCF)
Jacob Kongsted, Univ. of Southern Denmark, Denmark (QM/MM code)
Henrik Koch, University of Trondheim, Norway (CC module, Cholesky decomposition)
Andrea Ligabue, University of Modena, Italy (CTOCD, AOSOPPA)
Ola B. Lutnaes, University of Oslo, Norway (DFT Hessian)
Kurt V. Mikkelsen, University of Copenhagen, Denmark (MC-SCRF and QM/MM code)
Christian Neiss, Univ. Erlangen-Nürnberg, Germany (CCSD(R12))
Christian B. Nielsen, University of Copenhagen, Denmark (QM/MM code)
Patrick Norman, University of Linkoeping, Sweden (cubic response and complex response in RESPONS)
Jeppe Olsen, Aarhus University, Denmark (SIRIUS CI/density modules)
Anders Osted, Copenhagen University, Denmark (QM/MM code)
Martin J. Packer, University of Sheffield, UK (SOPPA)
Thomas B. Pedersen, University of Oslo, Norway (Cholesky decomposition)
Zilvinas Rinkevicius, KTH Stockholm, Sweden (open-shell DFT, ESR)
Elias Rudberg, KTH Stockholm, Sweden (DFT grid and basis info)
Torgeir A. Ruden, University of Oslo, Norway (Numerical derivatives in ABACUS)
Kenneth Ruud, University of Tromsoe, Norway (DALTON; ABACUS magnetic properties and much more)
Pawel Salek, KTH Stockholm, Sweden (DALTON; DFT code)
Claire C.M. Samson University of Karlsruhe Germany (Boys localization, r12 integrals in ERI)
Alfredo Sanchez de Meras, University of Valencia, Spain (CC module, Cholesky decomposition)
Trond Saue, CNRS/ULP Toulouse, France (direct Fock matrix construction)
Stephan P. A. Sauer, University of Copenhagen, Denmark (SOPPA(CCSD), SOPPA prop., AOSOPPA, vibrational g-factors)
Bernd Schimmelpfennig, Forschungszentrum Karlsruhe, Germany (AMFI module)
Arnfinn H. Steindal, University of Tromsoe, Norway (parallel QM/MM)
K. O. Sylvester-Hvid, University of Copenhagen, Denmark (MC-SCRF)
Peter R. Taylor, VLSCI/Univ. of Melbourne, Australia (Symmetry handling ABACUS, integral transformation)
David P. Tew, University of Bristol, England (CCSD(R12))
Olav Vahtras, KTH Stockholm, Sweden (triplet response, spin-orbit, ESR, TDDFT, open-shell DFT)
David J. Wilson, La Trobe University, Australia (DFT Hessian and DFT magnetizabilities)
Hans Agren, KTH Stockholm, Sweden (SIRIUS module, MC-SCRF solvation model)
--------------------------------------------------------------------------------

Date and time (Linux) : Wed Aug 13 16:29:19 2014
Host name : nyx0001.engin.umich.edu

* Work memory size : 131000000 = 999.45 megabytes.
+ memory for in-core integrals : 134000000

* Directories for basis set searches:
1) /nobackup/maxiao/dalton_scr/Brad/PBTCTO
2) /home/maxiao/Dalton/Dalton2011_release/basis


*******************************************************************
*********** Output from DALTON general input processing ***********
*******************************************************************

--------------------------------------------------------------------------------
Overall default print level: 0
Print level for DALTON.STAT: 1

AO-direct calculation (in sections where implemented)
HERMIT 1- and 2-electron integral sections will be executed
"Old" integral transformation used (limited to max 255 basis functions)
Wave function sections will be executed (SIRIUS module)
Dynamic molecular response properties section will be executed (RESPONSE module)
--------------------------------------------------------------------------------


****************************************************************************
*************** Output of molecule and basis set information ***************
****************************************************************************


The two title cards from your ".mol" input:
------------------------------------------------------------------------
1: 2BrCHO test calculation
2: using the 6-31G basis
------------------------------------------------------------------------

Coordinates are entered in Angstrom and converted to atomic units.
- Conversion factor : 1 bohr = 0.52917721 A

Atomic type no. 1
--------------------
Nuclear charge: 6.00000
Number of symmetry independent centers: 19
Number of basis sets to read; 2
Basis set file used for this atomic type with Z = 6 :
"/home/maxiao/Dalton/Dalton2011_release/basis/6-31G*"

Info about the basis set file: your basis has no documentation.
Basis set: 6-31G*

Atomic type no. 2
--------------------
Nuclear charge: 1.00000
Number of symmetry independent centers: 12
Number of basis sets to read; 2
Basis set file used for this atomic type with Z = 1 :
"/home/maxiao/Dalton/Dalton2011_release/basis/6-31G*"

Info about the basis set file: your basis has no documentation.
Basis set: 6-31G*

Atomic type no. 3
--------------------
Nuclear charge: 8.00000
Number of symmetry independent centers: 3
Number of basis sets to read; 2
Basis set file used for this atomic type with Z = 8 :
"/home/maxiao/Dalton/Dalton2011_release/basis/6-31G*"

Info about the basis set file: your basis has no documentation.
Basis set: 6-31G*

Atomic type no. 4
--------------------
Nuclear charge: 16.00000
Number of symmetry independent centers: 3
Number of basis sets to read; 2
Basis set file used for this atomic type with Z = 16 :
"/home/maxiao/Dalton/Dalton2011_release/basis/6-31G*"

Info about the basis set file: your basis has no documentation.
Basis set: 6-31G*


SYMGRP: Point group information
-------------------------------

Point group: C1


Isotopic Masses
---------------

C 12.000000
C 12.000000
C 12.000000
C 12.000000
C 12.000000
C 12.000000
C 12.000000
C 12.000000
C 12.000000
C 12.000000
C 12.000000
C 12.000000
C 12.000000
C 12.000000
C 12.000000
C 12.000000
C 12.000000
C 12.000000
C 12.000000
H 1.007825
H 1.007825
H 1.007825
H 1.007825
H 1.007825
H 1.007825
H 1.007825
H 1.007825
H 1.007825
H 1.007825
H 1.007825
H 1.007825
O 15.994915
O 15.994915
O 15.994915
S 31.972072
S 31.972072
S 31.972072

Total mass: 383.994861 amu
Natural abundance: 68.907 %

Center-of-mass coordinates (a.u.): 0.026321 -0.007381 -0.000704


Atoms and basis sets
--------------------

Number of atom types : 4
Total number of atoms: 37

Basis set used is "6-31G*" from the basis set library.

label atoms charge prim cont basis
----------------------------------------------------------------------
C 19 6.0000 27 14 [10s4p1d|3s2p1d]
H 12 1.0000 4 2 [4s|2s]
O 3 8.0000 27 14 [10s4p1d|3s2p1d]
S 3 16.0000 51 18 [16s10p1d|4s3p1d]
----------------------------------------------------------------------
total: 37 198.0000 795 386
----------------------------------------------------------------------
Spherical harmonic basis used.

Threshold for integrals: 1.00D-15

Max interatomic separation is 13.9719 Angstrom ( 26.4031 Bohr)
between atoms 31 and 21, " H " and " H ".


Bond distances (Angstrom):
--------------------------

atom 1 atom 2 distance
------ ------ --------
bond distance: C C 1.426026
bond distance: C C 1.390460
bond distance: C C 1.408070
bond distance: C C 1.424806
bond distance: C C 1.404979
bond distance: C C 1.393244
bond distance: C C 1.439874
bond distance: C C 1.357236
bond distance: C C 1.426761
bond distance: C C 1.374389
bond distance: C C 1.445959
bond distance: C C 1.358267
bond distance: C C 1.375589
bond distance: C C 1.436413
bond distance: C C 1.494699
bond distance: C C 1.501259
bond distance: C C 1.467923
bond distance: C C 1.351240
bond distance: H C 1.083447
bond distance: H C 1.082469
bond distance: H C 1.084183
bond distance: H C 1.082341
bond distance: H C 1.091999
bond distance: H C 1.097116
bond distance: H C 1.096550
bond distance: H C 1.091891
bond distance: H C 1.096289
bond distance: H C 1.097349
bond distance: H C 1.083069
bond distance: H C 1.084695
bond distance: O C 1.376106
bond distance: O C 1.433876
bond distance: O C 1.376145
bond distance: O C 1.433904
bond distance: O C 1.220627
bond distance: S C 1.759642
bond distance: S C 1.754883
bond distance: S C 1.755294
bond distance: S C 1.778890
bond distance: S C 1.782964
bond distance: S C 1.749309


Bond angles (degrees):
----------------------

atom 1 atom 2 atom 3 angle
------ ------ ------ -----
bond angle: C C C 119.716
bond angle: C C C 111.782
bond angle: C C C 128.501
bond angle: C C C 122.350
bond angle: C C S 111.198
bond angle: C C S 126.452
bond angle: C C C 117.841
bond angle: C C O 121.359
bond angle: C C O 120.776
bond angle: C C C 119.934
bond angle: C C C 128.455
bond angle: C C C 111.611
bond angle: C C C 122.041
bond angle: C C S 111.939
bond angle: C C S 126.020
bond angle: C C C 118.115
bond angle: C C O 120.537
bond angle: C C O 121.319
bond angle: C C C 112.812
bond angle: C C H 123.129
bond angle: C C H 124.055
bond angle: C C H 127.405
bond angle: C C S 113.682
bond angle: H C S 118.913
bond angle: C C C 113.948
bond angle: C C H 122.499
bond angle: C C H 123.544
bond angle: C C C 126.050
bond angle: C C S 111.977
bond angle: C C S 121.973
bond angle: C C C 132.381
bond angle: C C S 118.897
bond angle: C C S 108.723
bond angle: C C H 129.670
bond angle: C C S 110.767
bond angle: H C S 119.563
bond angle: C C C 113.785
bond angle: C C C 137.674
bond angle: C C C 108.541
bond angle: C C C 114.295
bond angle: C C C 138.600
bond angle: C C C 107.105
bond angle: H C H 109.615
bond angle: H C H 109.521
bond angle: H C O 106.156
bond angle: H C H 109.248
bond angle: H C O 111.063
bond angle: H C O 111.186
bond angle: H C H 109.408
bond angle: H C H 109.647
bond angle: H C O 106.112
bond angle: H C H 109.332
bond angle: H C O 111.301
bond angle: H C O 110.981
bond angle: C C C 104.727
bond angle: C C O 128.976
bond angle: C C O 126.297
bond angle: C C C 110.343
bond angle: C C H 122.089
bond angle: C C H 127.568
bond angle: C C C 109.285
bond angle: C C H 124.349
bond angle: C C H 126.366
bond angle: C O C 114.610
bond angle: C O C 114.447
bond angle: C S C 90.518
bond angle: C S C 90.517
bond angle: C S C 92.430




Principal moments of inertia (u*A**2) and principal axes
--------------------------------------------------------

IA 1317.274214 0.999994 0.003334 0.000922
IB 4893.859661 -0.003348 0.999863 0.016193
IC 6133.681502 -0.000868 -0.016196 0.999868


Rotational constants
--------------------

A B C

383.6551 103.2680 82.3941 MHz
0.012797 0.003445 0.002748 cm-1


@ Nuclear repulsion energy : 2507.451104147116 Hartree

INFORMATION: Switched to "new" integral transformation (from 1988 ;-) )
because more than 255 basis functions.


.---------------------------------------.
| Starting in Integral Section (HERMIT) |
`---------------------------------------'



*************************************************************************
****************** Output from HERMIT input processing ******************
*************************************************************************



************************************************************************
************************** Output from HERINT **************************
************************************************************************

>>> Time used in ONEDRV is 0.46 seconds
>>> Time used in HUCKEL is 0.32 seconds
>>> Time used in POPOVLP is 0.15 seconds
>>> Time used in QUADRUP is 0.19 seconds
>>> Time used in KINENE is 0.16 seconds
>>> Time used in GABGEN is 0.52 seconds
>>>> Total CPU time used in HERMIT: 1.98 seconds
>>>> Total wall time used in HERMIT: 2.19 seconds


.----------------------------------.
| End of Integral Section (HERMIT) |
`----------------------------------'



.--------------------------------------------.
| Starting in Wave Function Section (SIRIUS) |
`--------------------------------------------'


*** Output from Huckel module :

Using EWMO model: T
Using EHT model: F
Number of Huckel orbitals each symmetry: 164

EWMO - Energy Weighted Maximum Overlap - is a Huckel type method,
which normally is better than Extended Huckel Theory.
Reference: Linderberg and Ohrn, Propagators in Quantum Chemistry (Wiley, 1973)

Huckel EWMO eigenvalues for symmetry : 1
-92.010649 -92.010642 -92.010635 -20.684997 -20.684845
-20.684701 -11.366422 -11.365410 -11.361314 -11.357620
-11.356092 -11.355041 -11.353349 -11.350812 -11.350679
-11.350216 -11.349209 -11.348051 -11.347108 -11.346679
-11.346172 -11.345514 -11.344947 -11.344310 -11.344000
-9.020417 -9.019701 -9.018861 -6.689044 -6.689003
-6.689001 -6.688963 -6.688900 -6.688812 -6.688150
-6.688142 -6.688128 -2.068811 -1.992425 -1.933284
-1.841661 -1.756950 -1.698468 -1.604926 -1.479927
-1.339173 -1.310954 -1.293697 -1.206503 -1.194615
-1.144011 -1.109311 -1.012537 -1.006847 -0.934806
-0.901638 -0.884533 -0.876028 -0.861185 -0.840399
-0.815352 -0.780869 -0.738010 -0.734194 -0.721369
-0.695481 -0.683309 -0.680483 -0.668851 -0.644165
-0.641882 -0.629494 -0.612834 -0.561061 -0.557949
-0.549829 -0.534997 -0.524978 -0.514182 -0.508853
-0.500430 -0.498650 -0.472355 -0.465205 -0.457241
-0.448193 -0.441471 -0.439363 -0.423365 -0.416543
-0.414072 -0.412181 -0.401900 -0.387426 -0.382115
-0.371862 -0.369599 -0.366346 -0.341448 -0.311646
-0.264745 -0.243046 -0.238170 -0.226778 -0.225886
-0.218451 -0.204316 -0.197417 -0.193734 -0.190979
-0.185121 -0.181105 -0.179632 -0.174324 -0.169795
-0.168077 -0.160877 -0.156842 -0.147978 -0.132934
-0.130378 -0.127141 -0.125398 -0.123751 -0.123309
-0.122025 -0.121185 -0.120282 -0.119714 -0.118777
-0.118026 -0.117756 -0.117230 -0.113564 -0.112060
-0.103972 -0.103795 -0.102152 -0.100930 -0.098353
-0.095932 -0.092936 -0.091160 -0.089826 -0.083573
-0.078920 -0.077614 -0.077030 -0.075216 -0.051137
-0.050622 -0.050593 -0.050217 -0.050105 -0.049828
-0.048734 -0.048333 -0.048241 -0.045015 -0.044410
-0.044020 -0.034184 -0.033724 -0.033394

**********************************************************************
*SIRIUS* a direct, restricted step, second order MCSCF program *
**********************************************************************


Date and time (Linux) : Wed Aug 13 16:29:25 2014
Host name : nyx0001.engin.umich.edu

Title lines from ".mol" input file:
2BrCHO test calculation
using the 6-31G basis

Print level on unit LUPRI = 2 is 0
Print level on unit LUW4 = 2 is 5

Restricted, closed shell Kohn-Sham DFT calculation.

Time-dependent Kohn-Sham DFT calculation (TD-DFT).

Fock matrices are calculated directly
without use of integrals on disk.

Initial molecular orbitals are obtained according to
".MOSTART EWMO " input option.

Wave function specification
============================
For the wave function of type : >>> KS-DFT <<<
Number of closed shell electrons 198
Number of electrons in active shells 0
Total charge of the molecule 0

Spin multiplicity 1
Total number of symmetries 1
Reference state symmetry 1

This is a DFT calculation of type: B3LYP
Weighted mixed functional:
HF exchange: 0.20000
VWN: 0.19000
LYP: 0.81000
Becke: 0.72000
Slater: 0.80000

Orbital specifications
======================
Abelian symmetry species All | 1
--- | ---
Occupied SCF orbitals 99 | 99
Secondary orbitals 287 | 287
Total number of orbitals 386 | 386
Number of basis functions 386 | 386

Optimization information
========================
Number of configurations 1
Number of orbital rotations 28413
------------------------------------------
Total number of variables 28414

Maximum number of Fock iterations 0
Maximum number of DIIS iterations 60
Maximum number of QC-SCF iterations 60
Threshold for SCF convergence 1.00D-05

This is a DFT calculation of type: B3LYP
Weighted mixed functional:
HF exchange: 0.20000
VWN: 0.19000
LYP: 0.81000
Becke: 0.72000
Slater: 0.80000


>>>>> DIIS optimization of Hartree-Fock <<<<<

C1-DIIS algorithm; max error vectors = 10

Iter Total energy Error norm Delta(E) DIIS dim.
-----------------------------------------------------------------------------
1 Screening settings (-IFTHRS, DIFDEN) -20 F
Received quit because N_SHL exceeds MXTSK 281626 281625

--- SEVERE ERROR, PROGRAM WILL BE ABORTED ---
Date and time (Linux) : Wed Aug 13 16:29:48 2014
Host name : nyx0001.engin.umich.edu

MPI node no.: 0
Reason: AOSAVE: N_SHL exceeds MXTSK

>>>> Total CPU time used in DALTON: 28.91 seconds
>>>> Total wall time used in DALTON: 29.40 seconds


QTRACE dump of internal trace stack

========================
level module
========================
13 SYMLOP
12 TWOLOP
11 TWOINT
10 HRFCK1
9 HERFCK
8 SIRFCK
7 FCK2AO
6 DIIS_CTL
5 SRDIIS
4 SIRCTL
3 SIRIUS
2 DALTON
1 DALTON main
========================

lyzhao
Posts: 74
Joined: 11 Nov 2013, 00:36
First name(s): Youzhao
Last name(s): Lan
Affiliation: Institute of Physical Chemistry
Country: China

Re: N_SHL exceeds MXTSK

Post by lyzhao » 16 Aug 2014, 00:23

please use the DALTON 2013.x
or recompile your DALTON 2011 with MMWORK=1.
You can modify the MMWORK=1 by
1. when rerun configure and answer "no" to the question
Would you like to activate the possibility of storing 2-el.int. in memory?
[y/N]

or
2. you can edit the file DALTON/include/incore.h and change INSTALL_MMWORK
to 1 in these two lines:
PARAMETER (MXTSK=(MXSHEL*(MXSHEL + 1)/2),
& MMWORK=INSTALL_MMWORK )
to
PARAMETER (MXTSK=(MXSHEL*(MXSHEL + 1)/2),
& MMWORK=1 )
and recompile.

Best
Lan

Post Reply

Who is online

Users browsing this forum: xiongyan21 and 8 guests