magnetizability

Find answers or ask questions regarding Dalton calculations.
Please upload an output file showing the problem, if applicable.
(It is not necessary to upload input files, they can be found in the output file.)

Post Reply
hanysek
Posts: 4
Joined: 17 Jul 2017, 11:07
First name(s): Tadeusz
Last name(s): Pluta
Affiliation: University of Silesia
Country: Poland

magnetizability

Post by hanysek » 17 Apr 2018, 14:38

Hi Dalton Team,
I calculated Ar magnetizability as **PROPERTIES (.MAGNET) and it worked just fine.
I wanted, before starting open shell calculations, to check **RESPONSE(*LINEAR) option. I figured that .PROPRT shpuld read ZZdh/dB2 with .DIASUS integrals and the results differ considerably from **PROPERTIES.
The ABACUS value is close to other calcs and experiment so I guess LinerResponse gave me something else.
What did I do wrong with this job?
Thanks in advance

Hanysek
Attachments
magnet_LR_ar_ar_ns_dcTZ.out
(40.7 KiB) Downloaded 42 times

hjaaj
Posts: 284
Joined: 27 Jun 2013, 18:44
First name(s): Hans Jørgen
Middle name(s): Aagaard
Last name(s): Jensen
Affiliation: Universith of Southern Denmark
Country: Denmark

Re: magnetizability

Post by hjaaj » 17 Apr 2018, 15:24

First of all, the diamagnetic contribution is an expectation value (1st order) and not a linear response property (2nd order).

Second, the DIASUS operators as ZZdh/DB2 is for use with London orbitals, and London orbitals are not implemented in **RESPONSE.

Only if you run with common gauge origin (.NOLONDON) in your **PROPERTIES calculation, will you be able to reproduce your **PROPERTIES values with values from the **RESPONS module.

hanysek
Posts: 4
Joined: 17 Jul 2017, 11:07
First name(s): Tadeusz
Last name(s): Pluta
Affiliation: University of Silesia
Country: Poland

Re: magnetizability

Post by hanysek » 17 Apr 2018, 15:38

Thanks for the reply. I know that diamagnetic part of mag.tensor is 1st order and paramagnetic part is 0 for closed shells, e.g. Ar.
But my goal is to get magnetizability for open shells eventually and there is no other option to achieve it in Dalton but RESPONSE, is it right?

Hanysek

hjaaj
Posts: 284
Joined: 27 Jun 2013, 18:44
First name(s): Hans Jørgen
Middle name(s): Aagaard
Last name(s): Jensen
Affiliation: Universith of Southern Denmark
Country: Denmark

Re: magnetizability

Post by hjaaj » 21 Apr 2018, 15:45

OK, but you had asked for linear response with the London diamagnetic operator, not expectation value.

Correct, if you want to use open-shell DFT, then you cannot use **PROPERTIES.

You can calculate magnetizabilities with open-shell MCSCF in **PROPERTIES.

xiongyan21
Posts: 144
Joined: 24 Sep 2014, 08:36
First name(s): yan
Last name(s): xiong
Affiliation: CENTRAL CHINA NORMAL UNIVERSITY
Country: China

Re: magnetizability

Post by xiongyan21 » 03 May 2018, 03:53

Dear Prof. Jensen
I cannot really understand what property that the original calculation asks for and simply move the .response section into the .property section
for a mcscf calculation, and wonder what should be replaced for *linear group
...
--- MACRO ITERATION 12 ---
--------------------------

...

*** Optimization control: MCSCF converged ***
Number of macro iterations used 12
Number of micro iterations used 174
Total number of CPU seconds used 127.70

CPU and wall time for MCSCF : 127.705 114.993
...

The input is
.dal
**DALTON INPUT
.RUN RESPONSE
.RUN PROPERTIES
.DIRECT
**INTEGRALS
.DIPLEN
.DIPVEL
.DIASUS
.MAGMOM
.RANGMO
.RPSO
.PSO
**WAVE FUNCTION
.hf
.mcscf
*SCF INPUT
.THRESH
1.0d-09
.MAX DIIS
500
*optimization
.MAX ma
50
.max ci
50
*configuration input
.SYMMETRY
1
.spin mul
1
.inactive
10
.electrons
8
.cas space
8
**properties
*LINEAR
.PROPRT
ZZdh/dB2
.PROPRT
ZZdh/dB2

*END OF

.mol
BASIS
d-aug-cc-pCVTZ
Ar
------------------------
AtomTypes=1 NoSymmetry Angstrom
Charge=18.0 Atoms=1
Ar 0.00000 0.00000 0.00000




Very Best Regards!
Last edited by xiongyan21 on 16 May 2018, 12:42, edited 1 time in total.

hjaaj
Posts: 284
Joined: 27 Jun 2013, 18:44
First name(s): Hans Jørgen
Middle name(s): Aagaard
Last name(s): Jensen
Affiliation: Universith of Southern Denmark
Country: Denmark

Re: magnetizability

Post by hjaaj » 03 May 2018, 07:22

See chapter 9 (in particular 9.1) and section 28.1.1 in the Dalton manual for information about how to calculate magnetizabilities with MCSCF wave functions.

With respect to your error: the *LINEAR input section is for the **RESPONSE module, not for the **PROPERTIES module.

xiongyan21
Posts: 144
Joined: 24 Sep 2014, 08:36
First name(s): yan
Last name(s): xiong
Affiliation: CENTRAL CHINA NORMAL UNIVERSITY
Country: China

Re: magnetizability

Post by xiongyan21 » 03 May 2018, 15:49

Dear Prof. Jensen
I modify the input and make the mcscf calculation work,but with IC Infinity 0.000000 0.000000 0.000000
************************************************************************
*************** Dalton - An Electronic Structure Program ***************
************************************************************************

This is output from DALTON release Dalton2016.2 (2016)
( Web site: http://daltonprogram.org )

----------------------------------------------------------------------------

NOTE:

Dalton is an experimental code for the evaluation of molecular
properties using (MC)SCF, DFT, CI, and CC wave functions.
The authors accept no responsibility for the performance of
the code or for the correctness of the results.

The code (in whole or part) is provided under a licence and
is not to be reproduced for further distribution without
the written permission of the authors or their representatives.

See the home page "http://daltonprogram.org" for further information.

If results obtained with this code are published,
the appropriate citations would be both of:

K. Aidas, C. Angeli, K. L. Bak, V. Bakken, R. Bast,
L. Boman, O. Christiansen, R. Cimiraglia, S. Coriani,
P. Dahle, E. K. Dalskov, U. Ekstroem,
T. Enevoldsen, J. J. Eriksen, P. Ettenhuber, B. Fernandez,
L. Ferrighi, H. Fliegl, L. Frediani, K. Hald, A. Halkier,
C. Haettig, H. Heiberg, T. Helgaker, A. C. Hennum,
H. Hettema, E. Hjertenaes, S. Hoest, I.-M. Hoeyvik,
M. F. Iozzi, B. Jansik, H. J. Aa. Jensen, D. Jonsson,
P. Joergensen, J. Kauczor, S. Kirpekar,
T. Kjaergaard, W. Klopper, S. Knecht, R. Kobayashi, H. Koch,
J. Kongsted, A. Krapp, K. Kristensen, A. Ligabue,
O. B. Lutnaes, J. I. Melo, K. V. Mikkelsen, R. H. Myhre,
C. Neiss, C. B. Nielsen, P. Norman, J. Olsen,
J. M. H. Olsen, A. Osted, M. J. Packer, F. Pawlowski,
T. B. Pedersen, P. F. Provasi, S. Reine, Z. Rinkevicius,
T. A. Ruden, K. Ruud, V. Rybkin, P. Salek, C. C. M. Samson,
A. Sanchez de Meras, T. Saue, S. P. A. Sauer,
B. Schimmelpfennig, K. Sneskov, A. H. Steindal,
K. O. Sylvester-Hvid, P. R. Taylor, A. M. Teale,
E. I. Tellgren, D. P. Tew, A. J. Thorvaldsen, L. Thoegersen,
O. Vahtras, M. A. Watson, D. J. D. Wilson, M. Ziolkowski
and H. Agren,
"The Dalton quantum chemistry program system",
WIREs Comput. Mol. Sci. 2014, 4:269–284 (doi: 10.1002/wcms.1172)

and

Dalton, a Molecular Electronic Structure Program,
Release Dalton2016.2 (2016), see http://daltonprogram.org
----------------------------------------------------------------------------

Authors in alphabetical order (major contribution(s) in parenthesis):

Kestutis Aidas, Vilnius University, Lithuania (QM/MM)
Celestino Angeli, University of Ferrara, Italy (NEVPT2)
Keld L. Bak, UNI-C, Denmark (AOSOPPA, non-adiabatic coupling, magnetic properties)
Vebjoern Bakken, University of Oslo, Norway (DALTON; geometry optimizer, symmetry detection)
Radovan Bast, UiT The Arctic U. of Norway, Norway (DALTON installation and execution frameworks)
Pablo Baudin, University of Valencia, Spain (Cholesky excitation energies)
Linus Boman, NTNU, Norway (Cholesky decomposition and subsystems)
Ove Christiansen, Aarhus University, Denmark (CC module)
Renzo Cimiraglia, University of Ferrara, Italy (NEVPT2)
Sonia Coriani, University of Trieste, Italy (CC module, MCD in RESPONS)
Janusz Cukras, University of Trieste, Italy (MChD in RESPONS)
Paal Dahle, University of Oslo, Norway (Parallelization)
Erik K. Dalskov, UNI-C, Denmark (SOPPA)
Thomas Enevoldsen, Univ. of Southern Denmark, Denmark (SOPPA)
Janus J. Eriksen, Aarhus University, Denmark (Polarizable embedding model, TDA)
Rasmus Faber, University of Copenhagen, Denmark (Vib.avg. NMR with SOPPA, parallel AO-SOPPA)
Berta Fernandez, U. of Santiago de Compostela, Spain (doublet spin, ESR in RESPONS)
Lara Ferrighi, Aarhus University, Denmark (PCM Cubic response)
Heike Fliegl, University of Oslo, Norway (CCSD(R12))
Luca Frediani, UiT The Arctic U. of Norway, Norway (PCM)
Bin Gao, UiT The Arctic U. of Norway, Norway (Gen1Int library)
Christof Haettig, Ruhr-University Bochum, Germany (CC module)
Kasper Hald, Aarhus University, Denmark (CC module)
Asger Halkier, Aarhus University, Denmark (CC module)
Frederik Beyer Hansen, University of Copenhagen, Denmark (Parallel AO-SOPPA)
Erik D. Hedegaard, Univ. of Southern Denmark, Denmark (Polarizable embedding model, QM/MM)
Hanne Heiberg, University of Oslo, Norway (geometry analysis, selected one-electron integrals)
Trygve Helgaker, University of Oslo, Norway (DALTON; ABACUS, ERI, DFT modules, London, and much more)
Alf Christian Hennum, University of Oslo, Norway (Parity violation)
Hinne Hettema, University of Auckland, New Zealand (quadratic response in RESPONS; SIRIUS supersymmetry)
Eirik Hjertenaes, NTNU, Norway (Cholesky decomposition)
Maria Francesca Iozzi, University of Oslo, Norway (RPA)
Brano Jansik Technical Univ. of Ostrava Czech Rep. (DFT cubic response)
Hans Joergen Aa. Jensen, Univ. of Southern Denmark, Denmark (DALTON; SIRIUS, RESPONS, ABACUS modules, London, and much more)
Dan Jonsson, UiT The Arctic U. of Norway, Norway (cubic response in RESPONS module)
Poul Joergensen, Aarhus University, Denmark (RESPONS, ABACUS, and CC modules)
Maciej Kaminski, University of Warsaw, Poland (CPPh in RESPONS)
Joanna Kauczor, Linkoeping University, Sweden (Complex polarization propagator (CPP) module)
Sheela Kirpekar, Univ. of Southern Denmark, Denmark (Mass-velocity & Darwin integrals)
Wim Klopper, KIT Karlsruhe, Germany (R12 code in CC, SIRIUS, and ABACUS modules)
Stefan Knecht, ETH Zurich, Switzerland (Parallel CI and MCSCF)
Rika Kobayashi, Australian National Univ., Australia (DIIS in CC, London in MCSCF)
Henrik Koch, NTNU, Norway (CC module, Cholesky decomposition)
Jacob Kongsted, Univ. of Southern Denmark, Denmark (Polarizable embedding model, QM/MM)
Andrea Ligabue, University of Modena, Italy (CTOCD, AOSOPPA)
Nanna H. List Univ. of Southern Denmark, Denmark (Polarizable embedding model)
Ola B. Lutnaes, University of Oslo, Norway (DFT Hessian)
Juan I. Melo, University of Buenos Aires, Argentina (LRESC, Relativistic Effects on NMR Shieldings)
Kurt V. Mikkelsen, University of Copenhagen, Denmark (MC-SCRF and QM/MM)
Rolf H. Myhre, NTNU, Norway (Cholesky, subsystems and ECC2)
Christian Neiss, Univ. Erlangen-Nuernberg, Germany (CCSD(R12))
Christian B. Nielsen, University of Copenhagen, Denmark (QM/MM)
Patrick Norman, Linkoeping University, Sweden (Cubic response and complex frequency response in RESPONS)
Jeppe Olsen, Aarhus University, Denmark (SIRIUS CI/density modules)
Jogvan Magnus H. Olsen, Univ. of Southern Denmark, Denmark (Polarizable embedding model, QM/MM)
Anders Osted, Copenhagen University, Denmark (QM/MM)
Martin J. Packer, University of Sheffield, UK (SOPPA)
Filip Pawlowski, Kazimierz Wielki University, Poland (CC3)
Morten N. Pedersen, Univ. of Southern Denmark, Denmark (Polarizable embedding model)
Thomas B. Pedersen, University of Oslo, Norway (Cholesky decomposition)
Patricio F. Provasi, University of Northeastern, Argentina (Analysis of coupling constants in localized orbitals)
Zilvinas Rinkevicius, KTH Stockholm, Sweden (open-shell DFT, ESR)
Elias Rudberg, KTH Stockholm, Sweden (DFT grid and basis info)
Torgeir A. Ruden, University of Oslo, Norway (Numerical derivatives in ABACUS)
Kenneth Ruud, UiT The Arctic U. of Norway, Norway (DALTON; ABACUS magnetic properties and much more)
Pawel Salek, KTH Stockholm, Sweden (DALTON; DFT code)
Claire C. M. Samson University of Karlsruhe Germany (Boys localization, r12 integrals in ERI)
Alfredo Sanchez de Meras, University of Valencia, Spain (CC module, Cholesky decomposition)
Trond Saue, Paul Sabatier University, France (direct Fock matrix construction)
Stephan P. A. Sauer, University of Copenhagen, Denmark (SOPPA(CCSD), SOPPA prop., AOSOPPA, vibrational g-factors)
Bernd Schimmelpfennig, Forschungszentrum Karlsruhe, Germany (AMFI module)
Kristian Sneskov, Aarhus University, Denmark (Polarizable embedding model, QM/MM)
Arnfinn H. Steindal, UiT The Arctic U. of Norway, Norway (parallel QM/MM, Polarizable embedding model)
Casper Steinmann, Univ. of Southern Denmark, Denmark (QFIT, Polarizable embedding model)
K. O. Sylvester-Hvid, University of Copenhagen, Denmark (MC-SCRF)
Peter R. Taylor, VLSCI/Univ. of Melbourne, Australia (Symmetry handling ABACUS, integral transformation)
Andrew M. Teale, University of Nottingham, England (DFT-AC, DFT-D)
David P. Tew, University of Bristol, England (CCSD(R12))
Olav Vahtras, KTH Stockholm, Sweden (triplet response, spin-orbit, ESR, TDDFT, open-shell DFT)
David J. Wilson, La Trobe University, Australia (DFT Hessian and DFT magnetizabilities)
Hans Agren, KTH Stockholm, Sweden (SIRIUS module, RESPONS, MC-SCRF solvation model)
--------------------------------------------------------------------------------

Date and time (Darwin) : Fri May 4 11:16:09 2018
Host name :
* Work memory size : 1920000000 = 14.305 gigabytes.


Compilation information
-----------------------

Who compiled | root
Host |
System | Darwin-17.3.0
CMake generator | Unix Makefiles
Processor | x86_64
64-bit integers | OFF
MPI | ON
Fortran compiler | /usr/local/bin/mpif90
Fortran compiler version | GNU Fortran (Homebrew GCC 7.2.0) 7.2.0
C compiler | /usr/local/bin/mpicc
C compiler version | Apple LLVM version 9.0.0 (clang-900.0.39.2)
C++ compiler | /usr/local/bin/mpicxx
C++ compiler version | unknown
BLAS | /usr/lib/libblas.dylib
LAPACK | /usr/lib/liblapack.dylib
Static linking | OFF
Last Git revision | 7db4647eac203e51aae7da3cbc289f55146b30e9
Configuration time | 2018-01-13 20:10:21.016832

* Sequential calculation.


Content of the .dal input file
----------------------------------

**DALTON INPUT
.RUN RESPONSE
.RUN PROPERTIES
.DIRECT
**INTEGRALS
.DIPLEN
.DIPVEL
.DIASUS
.MAGMOM
.RANGMO
.RPSO
.PSO
.DIASUS
**WAVE FUNCTION
.hf
.mcscf
*SCF INPUT
.THRESH
1.0d-09
.MAX DIIS
500
*optimization
.MAX ma
50
.max ci
50
*configuration input
.SYMMETRY
1
.spin mul
1
.inactive
10
.electrons
8
.cas space
8
**properties
.magnet
*END OF


Content of the .mol file
----------------------------

BASIS
d-aug-cc-pCVTZ
Ar
------------------------
AtomTypes=1 NoSymmetry Angstrom
Charge=18.0 Atoms=1
Ar 0.00000 0.00000 0.00000
...


****************************************************************************************
************************ ABACUS - MOLECULAR ROTATIONAL g-TENSOR ************************
****************************************************************************************


London orbitals used.


Principal moments of inertia (a.u.) and principal axes
------------------------------------------------------
...
IC Infinity 0.000000 0.000000 0.000000

Molecular rot. g-factor : 0.00000000
Nuclear contribution : 0.00000000
Diamagnetic contribution: 0.00000000
Electronic contribution : 0.00000000

Molecular rotational g-tensor is spherical.


CPU time statistics for ABACUS
------------------------------

RHSIDE 00:00:04 62 %
LINRES 00:00:02 34 %

TOTAL 00:00:06 100 %


Total CPU time used in ABACUS: 6.41 seconds
Total wall time used in ABACUS: 6.47 seconds


.-------------------------------------------.
| End of Static Property Section (ABACUS) - |
`-------------------------------------------'

Total CPU time used in DALTON: 2 minutes 17 seconds
Total wall time used in DALTON: 2 minutes 3 seconds


Date and time (Darwin) : Thu May 3 22:42:11 2018
Host name :
The repeated calculation confirms the results:
...
****************************************************************************************
************************ ABACUS - MOLECULAR ROTATIONAL g-TENSOR ************************
****************************************************************************************


London orbitals used.


Principal moments of inertia (a.u.) and principal axes
------------------------------------------------------

IA 0.006974 0.000000 0.000000 0.000000
IB -257.774452 0.000000 0.000000 0.000000
IC Infinity 0.000000 0.000000 0.000000

Molecular rot. g-factor : 0.00000000
Nuclear contribution : 0.00000000
Diamagnetic contribution: 0.00000000
Electronic contribution : 0.00000000

Molecular rotational g-tensor is spherical.


CPU time statistics for ABACUS
------------------------------

RHSIDE 00:00:04 63 %
LINRES 00:00:02 32 %

TOTAL 00:00:07 100 %


Total CPU time used in ABACUS: 6.80 seconds
Total wall time used in ABACUS: 6.89 seconds


.-------------------------------------------.
| End of Static Property Section (ABACUS) - |
`-------------------------------------------'

Total CPU time used in DALTON: 2 minutes 20 seconds
Total wall time used in DALTON: 2 minutes 6 seconds


Date and time (Darwin) : Sat May 12 18:35:12 2018
Host name :
Last edited by xiongyan21 on 16 May 2018, 12:43, edited 8 times in total.

hjaaj
Posts: 284
Joined: 27 Jun 2013, 18:44
First name(s): Hans Jørgen
Middle name(s): Aagaard
Last name(s): Jensen
Affiliation: Universith of Southern Denmark
Country: Denmark

Re: magnetizability

Post by hjaaj » 03 May 2018, 21:15

You have calculated properties for the very unphysical total charge of -10, and therefore you get strange results.

Another time, please use the "Attachments" tab below the editing window to add output as an attachment instead of copying it into the editing window.

Post Reply

Who is online

Users browsing this forum: No registered users and 3 guests