mcscf CAS active space

Find answers or ask questions regarding Dalton calculations.
Please upload an output file showing the problem, if applicable.
(It is not necessary to upload input files, they can be found in the output file.)

Post Reply
greifsw
Posts: 11
Joined: 28 May 2016, 21:05
First name(s): Amit
Last name(s): Sharma
Affiliation: Wright State University
Country: United States

mcscf CAS active space

Post by greifsw » 12 Sep 2018, 16:36

I am trying to understand active space setup in Dalton by running MCSCF CAS calculation for Li atom. I want to calculate electronic states for 1s2 2s 2p 3s electronic configuration which should be - 2 ^2Sigma+, 2 ^2Pi (degenerate x, y and z) and 3 ^2Sigma+

My first questions is - Should the CAS SPACE entry also include the INACTIVE ORBITALS specified in the input? I have set 1s as INACTIVE ORBITAL and
.CAS SPACE
3 2 2 0 2 0 0 0 ! not sure is this 1s 2s 3s or not - should it be 2 2 2 0 2 0 0 0

The input is setup to calculate two doublet sigma+ states with symmetry Ag, but the calculation fails with error
--- CICHCK option 2, cannot proceed:
number of trial vectors of right symmetry is 1
which is less than current reference state no. 2

Can someone point to error in the input. Also, how do I calculate states with different symmetries? How would the input deck look like to calculate all states listed above.
Thanks
Amit
Attachments
li.mol
(78 Bytes) Downloaded 17 times
m.dal
(304 Bytes) Downloaded 6 times

hjaaj
Posts: 282
Joined: 27 Jun 2013, 18:44
First name(s): Hans Jørgen
Middle name(s): Aagaard
Last name(s): Jensen
Affiliation: Universith of Southern Denmark
Country: Denmark

Re: mcscf CAS active space

Post by hjaaj » 13 Sep 2018, 11:27

No, inactive orbitals should NOT be included in the CAS space.

The 8 symmetries in D2h correspond to:

s+dz2+d(x2-y2), px, py, dxy, pz, dxz, dyz, fxyz

If you look at the MOs in symmetry 1 in your output you can see that the 3 orbitals in CAS (number 2,3,4) are the 2s, a 3d, and another 3d. Therefore it cannot find the second state of the same symmetry as the ground state. The MO output tells you that you need to include 4 orbitals to get 3s active for this start guess (or - which is a little more complicated - reorder orbitals).

Anyway, I would suggest you do a Hartree-Fock before the MCSCF, i.e. add the .HF keyword to your .dal input. Then the orbitals are optimized at the HF level and will be as one would expect, and you should then have "2 2 2 0 2 0 0 0" to include 2s, 3s, 2p, 3p in the .CAS SPACE

greifsw
Posts: 11
Joined: 28 May 2016, 21:05
First name(s): Amit
Last name(s): Sharma
Affiliation: Wright State University
Country: United States

Re: mcscf CAS active space

Post by greifsw » 13 Sep 2018, 15:23

Thanks, now I get a different error. I followed your suggestion and it seems the calculation runs fine. I see two energies, and 3 ^2S is approximately 27,000 cm-1 above 2 ^2S which is reasonable. I see the following in the output

(CIST1) 2 lowest diagonal elements:
Element no. Config.no. Active energy Total energy
1 : 1 -0.1962997355 -7.4324207822
2 : 2 -0.0733507728 -7.3094718195
Convergence threshold for CI optimization : 0.00000005
The requested root number is now converged.

but after that the calculation halts with error. I attaching output file
Attachments
tmp_li.out
(29.95 KiB) Downloaded 10 times

hjaaj
Posts: 282
Joined: 27 Jun 2013, 18:44
First name(s): Hans Jørgen
Middle name(s): Aagaard
Last name(s): Jensen
Affiliation: Universith of Southern Denmark
Country: Denmark

Re: mcscf CAS active space

Post by hjaaj » 14 Sep 2018, 09:06

In your case with single-CSF solutions to the CI (because of HF and Brillouin's theorem) the approximate algorithm for symmetry detection of the CI solutions fails. You can disable the check by adding to the input:

Code: Select all

*OPTIMIZATION
.SYM CHECK
 -1
 

greifsw
Posts: 11
Joined: 28 May 2016, 21:05
First name(s): Amit
Last name(s): Sharma
Affiliation: Wright State University
Country: United States

Re: mcscf CAS active space

Post by greifsw » 14 Sep 2018, 14:43

As a followup, how does one calculate states of different symmetry in single calculation? Suppose I want to calculate two doublet Sigma, and one PI state (Px- B3u Py B2u, and Pz B1u degenerate states) then should I repeat the *CONFIGURATION INPUT block, or, provide multiple symmetry labels under .SYMMETRY?

I tried not knowing how to do it, but does not seem to work.
Last edited by greifsw on 14 Sep 2018, 18:47, edited 1 time in total.

xiongyan21
Posts: 142
Joined: 24 Sep 2014, 08:36
First name(s): yan
Last name(s): xiong
Affiliation: CENTRAL CHINA NORMAL UNIVERSITY
Country: China

Re: mcscf CAS active space

Post by xiongyan21 » 14 Sep 2018, 15:13

You may add and specify the SIMULTANEOUS ROOTS group,and change the DOUBLY OCCUPIED, INACTIVE ORBITALS, and CAS SPACE groups, respectively, to satisfy your needs, because actually, the calculation with DALTON2016.2 using you original and modified inputs all give
...
************************************************************************
************************** Output from HERINT **************************
************************************************************************


Threshold for neglecting two-electron integrals: 1.00D-12
HERMIT - Number of two-electron integrals written: 4806 ( 12.6% )
HERMIT - Megabytes written: 0.062


FIRST HALF-SORT STATISTICS
NUMBER OF PASSES OVER AO FI 1
NUMBER OF BLOCKS PER CHA 276
TOTAL NUMBER OF CHAINS 1
NUMBER OF BUFFERS PER PA 1

NUMBER OF INTEGRALS PER DIRECT ACCESS BUFFER 1706

NUMBER OF DA RECORDS FOR ALL INTEGRALS 7
NUMBER OF DA RECORDS ACTUALLY USED 6
PERCENT NON-ZERO AO INTEGRALS 0.01

THRESHOLD FOR DISCARDING INTEGRALS 1.00D-13

TIME IN SORTA 0.01

NUMBER OF INTEGRALS (PQ/CD) WRITTEN ON UNIT 11 IS 1406

THRESHOLD FOR DISCARDING INTEGRALS 1.00D-12
TIME IN TRACD 0.00

SECOND HALF-SORT STATISTICS
NUMBER OF PASSES OVER FILE 1
NUMBER OF BLOCKS PER CHA 36
TOTAL NUMBER OF CHAINS 1
NUMBER OF BUFFERS PER PA 1

NUMBER OF INTEGRALS PER DIRECT ACCESS BUFFER 1706

NUMBER OF DA RECORDS FOR ALL INTEGRALS 1
NUMBER OF DA RECORDS ACTUALLY USED 1
PERCENT NON-ZERO INTEGRALS 0.01
TIME IN SORTB 0.00
TIME IN TRAAB 0.00

NUMBER OF TRANSFORMED INTEGRALS WRITTEN ON UNIT 10 IS 767
USING 36 + 1 RECORDS WITH BUFFER LENGTH 63

THRESHOLD FOR DISCARDING INTEGRALS 1.00D-12
TOTAL TIME IN TRACD,SORTB,TRAAB 0.00

Integral transformation: Total CPU and WALL times (sec) 0.008 0.008
Inactive one-electron energy : -8.885228051050
Inactive total energy : -7.236087746801

(CIST1) 2 lowest diagonal elements:

Element no. Config.no. Active energy Total energy

1 : 1 -0.1963306516 -7.4324183984
2 : 2 0.1011420310 -7.1349457158


*** CI ITERATION NO. 1


The reduced CI matrix, iteration 1

2 lowest eigenvalues of reduced CI matrix :

-1.963307D-01 1.011420D-01

- and the lowest 2 eigenvectors :

Column 1 Column 2
1 1.00000000 0.00000000
2 0.00000000 1.00000000
==== End of matrix output ====


Convergence threshold for CI optimization : 0.00000005


CI root eigenvalue residual norm

1 -7.4324183984 0.0000000000 converged
2 -7.1349457158 0.0000000000 converged

The requested root number is now converged.


*** CI converged in 1 iterations.



@ Final CI energies and residuals in symmetry 1 (irrep Ag )
@ 1 -7.432418398444453 3.15D-17
@ 2 -7.134945715788980 3.12D-17

Total time used in CICTL : 0.02
Integral transformation : 0.01
Total for 1 CI iterations : 0.00
hereof used in 2 linear transformations : 0.00

--- CICHCK: removed CI start vector no. 2



--- CICHCK; REMOVE CI VECTORS OF NON-DESIRED SYMMETRY
OPTION = 2, number of CI trial vectors removed : 1
ISTATE, orignal and after reduce: 2 2
LROOTS, orignal and after reduce: 2 1
NROOTS, orignal and after reduce: 2 1

--- CICHCK; THE SYMMETRY TEST MATRIX:

Column 1 Column 2
1 -0.19633065 0.00000000
2 0.00000000 0.10114203
==== End of matrix output ====


--- CICHCK option 2, cannot proceed:
number of trial vectors of right symmetry is 1
which is less than current reference state no. 2

--- SEVERE ERROR, PROGRAM WILL BE ABORTED ---
Date and time (Darwin) : Fri Sep 14 22:34:03 2018
Host name :

@ MPI MASTER, node no.: 0
@ Reason: --- CICHCK: too few trial CI vecs. of right symmetry

Total CPU time used in DALTON: 0.04 seconds
Total wall time used in DALTON: 0.05 seconds


QTRACE dump of internal trace stack

========================
level module
========================
7 CICHCK
6 OPTST
5 SIROPT
4 SIRCTL
3 SIRIUS
2 DALTON
1 DALTON main
========================
Last edited by xiongyan21 on 15 Sep 2018, 02:44, edited 1 time in total.

greifsw
Posts: 11
Joined: 28 May 2016, 21:05
First name(s): Amit
Last name(s): Sharma
Affiliation: Wright State University
Country: United States

Re: mcscf CAS active space

Post by greifsw » 14 Sep 2018, 19:06

Yan, Here is the input with modification suggested by Hans Jørgen. This should finish without error. Do you have an example to show how to compute multiple states with different symmetry in a single calculation?

Code: Select all

**DALTON INPUT
.RUN WAVE FUNCTIONS
**WAVE FUNCTIONS
.HF
.MCSCF
*SCF INPUT
.DOUBLY OCCUPIED
1 0 0 0 0 0 0 0
*CONFIGURATION INPUT
.SYMMETRY
 1
.SPIN MULTIPLICITY
 2
.INACTIVE ORBITALS
1 0 0 0 0 0 0 0
.ELECTRONS (active)
 1
.CAS SPACE
2 2 2 0 2 0 0 0
*OPTIMIZATION
.THRESHOLD
  1.D-07
.SYM CHECK
 -1
.STATE
  2
**END OF DALTON INPUT

xiongyan21
Posts: 142
Joined: 24 Sep 2014, 08:36
First name(s): yan
Last name(s): xiong
Affiliation: CENTRAL CHINA NORMAL UNIVERSITY
Country: China

Re: mcscf CAS active space

Post by xiongyan21 » 15 Sep 2018, 02:43

Sure, the last input works.
...
Occupancies of natural orbitals
-------------------------------

Symmetry 1 ( Ag ) -- Total occupation in this symmetry is 3.000000000

2.000000000 0.000000000 1.000000000

Symmetry 2 ( B3u) -- Total occupation in this symmetry is 0.000000000

0.000000000 0.000000000

Symmetry 3 ( B2u) -- Total occupation in this symmetry is 0.000000000

0.000000000 0.000000000

Symmetry 4 ( B1g) -- No occupied orbitals

Symmetry 5 ( B1u) -- Total occupation in this symmetry is 0.000000000

0.000000000 0.000000000

Symmetry 6 ( B2g) -- No occupied orbitals

Symmetry 7 ( B3g) -- No occupied orbitals

Symmetry 8 ( Au ) -- No occupied orbitals

File label for MO orbitals: 15Sep18 (CNOORB)

(Only coefficients > 0.0100 are printed.)

Molecular orbitals for symmetry species 1 (Ag )
------------------------------------------------

Orbital 1 2 3 4 5 6 7
1 Li 0:1s 1.0007 0.0023 -0.0663 0.0000 -0.0000 -0.7915 0.0000
2 Li 0:1s -0.0004 0.5359 -0.3921 0.0000 -0.0000 -2.2837 0.0000
3 Li 0:1s -0.0049 0.5099 -0.5666 0.0000 -0.0000 3.2411 0.0000
4 Li 0:1s 0.0013 0.0074 1.3809 0.0000 -0.0000 -1.3658 0.0000
5 Li 0:3d0 0.0000 0.0000 -0.0000 0.0000 -0.4053 0.0000 0.0000
6 Li 0:3d2+ 0.0000 0.0000 0.0000 -0.4053 0.0000 0.0000 -2.0936
7 Li 0:3d0 -0.0000 0.0000 -0.0000 0.0000 1.3398 -0.0000 0.0000
8 Li 0:3d2+ 0.0000 0.0000 0.0000 1.3398 0.0000 0.0000 1.6591

Orbital 8
5 Li 0:3d0 -2.0936
7 Li 0:3d0 1.6591

Molecular orbitals for symmetry species 2 (B3u)
------------------------------------------------

Orbital 1 2 3
1 Li 0:2px 0.6002 -0.4153 -1.1158
2 Li 0:2px 0.4997 -0.0174 1.4997
3 Li 0:2px 0.0182 0.9897 -0.7646

Molecular orbitals for symmetry species 3 (B2u)
------------------------------------------------

Orbital 1 2 3
1 Li 0:2py 0.6002 -0.4153 -1.1158
2 Li 0:2py 0.4997 -0.0174 1.4997
3 Li 0:2py 0.0182 0.9897 -0.7646

Molecular orbitals for symmetry species 4 (B1g)
------------------------------------------------

Orbital 1 2
1 Li 0:3d2- -0.4053 -2.0936
2 Li 0:3d2- 1.3398 1.6591

Molecular orbitals for symmetry species 5 (B1u)
------------------------------------------------

Orbital 1 2 3
1 Li 0:2pz 0.6002 -0.4153 -1.1158
2 Li 0:2pz 0.4997 -0.0174 1.4997
3 Li 0:2pz 0.0182 0.9897 -0.7646

Molecular orbitals for symmetry species 6 (B2g)
------------------------------------------------

Orbital 1 2
1 Li 0:3d1+ -0.4053 -2.0936
2 Li 0:3d1+ 1.3398 1.6591

Molecular orbitals for symmetry species 7 (B3g)
------------------------------------------------

Orbital 1 2
1 Li 0:3d1- -0.4053 -2.0936
2 Li 0:3d1- 1.3398 1.6591

Printout of CI-coefficients abs greater than 0.10000 for root 2
*** NOTE: this root is the reference state ***

Printout of coefficients in interval 3.1623E-01 to 1.0000E+00
===============================================================

Coefficient of CSF no. 2 is 1.00000000 1.00000000E+00
Orbital 2
Spin coupling 1

Printout of coefficients in interval 1.0000E-01 to 3.1623E-01
===============================================================
( no coefficients )

Norm of printed CI vector .. 1.00000000

Magnitude of CI coefficients
============================
( Ranges are relative to norm of vector : 1.00E+00 )

10- 1 to 10- 0 1 0.10000000E+01 1.0000000000
Number of coefficients less than 10^-11 times norm is 1

Total CPU time used in SIRIUS : 0.07 seconds
Total wall time used in SIRIUS : 0.09 seconds


Date and time (Darwin) : Sat Sep 15 09:41:25 2018
Host name :

NOTE: 2 warnings have been issued.
Check output, result, and error files for "WARNING".


.---------------------------------------.
| End of Wave Function Section (SIRIUS) |
`---------------------------------------'

Total CPU time used in DALTON: 0.10 seconds
Total wall time used in DALTON: 0.11 seconds


Date and time (Darwin) : Sat Sep 15 09:41:25 2018
Host name :

In the DALTON manual, there is an illustration of the optimization of first excited state of the same symmetry as the ground state, but when I simply specify 3 3, the calculation fails
...
Reduced L root no. 1
ITER EVAL EVEC(1) EVEC(2) EVEC(3)
----------------------------------------------------------------------------
1 -0.331127518316 0.016782083372 0.001149905000 -0.258327126791
2 -0.165045393784 0.573458041614 0.819233562484 -0.000700228682
3 -0.842482271568 -0.032104444262 -0.001130662793 0.795517788411
4 -1.218446775726 -0.002992431666 -0.004467550403 0.678187485204
5 -0.002535180959 -0.292817793560 0.042133209032 0.047769855740
6 -0.022525611126 0.073883724435 0.270148849256 -0.071731805879
7 -0.000418389892 -0.141089704273 0.028970176769 -0.007943995070
8 -0.001495864695 -0.082049141140 0.018359974361 0.082778740455
9 0.000000000000 0.000000000000 0.000000000000 0.000000000000
9 0.000000000000 0.000000000000 0.000000000000 0.000000000000
9 -0.000373109832 0.134840269303 -0.012473719525 -0.034620827824
10 -0.000756496984 -0.094244502788 0.018691510645 0.053131734512
11 -0.007248707825 -0.028869107689 0.021394675875 0.164359348804
12 0.000000000000 0.000000000000 0.000000000000 0.000000000000
12 -0.001782716266 -0.055988929299 -0.020376411083 0.080272496607
13 -0.002158072057 -0.052143302703 -0.005855894765 0.092622723336
14 0.000000000000 0.000000000000 0.000000000000 0.000000000000
14 -0.001076702104 -0.068658415523 -0.020079313372 0.060012206644
15 -0.003609640088 -0.039509216139 0.006295406223 0.119055729288
16 0.000000000000 0.000000000000 0.000000000000 0.000000000000
16 -0.000131493081 -0.187501073641 0.008573588300 0.019847402558
17 -0.000947823255 0.074440057273 -0.015202331336 -0.058038871088
18 -0.000694307047 -0.081773637425 -0.019803873572 0.045472135512
19 -0.000825079013 0.078752167035 -0.015118426211 -0.053602101376
20 -0.000394564745 -0.101459148016 -0.018373629630 0.030949314461
21 -0.001496576711 -0.058831694454 0.003813827976 0.077337938979
22 -0.000054073655 -0.108737802680 0.010365461372 0.002619593311
23 -0.000602144357 0.084919758818 -0.015541400784 -0.044304471744
24 -0.000127370619 -0.122078699840 -0.014704808167 0.010001721409
25 -0.000531325770 0.085802497162 -0.015259038325 -0.041015824377
26 -0.000043542902 -0.018194670375 0.008970264336 -0.003508324278
27 -0.000605434450 0.024193873319 -0.012703672946 -0.046092013067
28 0.000000000000 0.000000000000 0.000000000000 0.000000000000
28 0.000000000000 0.000000000000 0.000000000000 0.000000000000
28 -0.000003567924 0.315924626009 -0.000896289470 -0.003625057512
29 -0.000003363719 0.230776055668 0.000905899715 -0.003400589219
30 -0.000004972714 0.145572783642 0.001571528563 -0.003723478969
31 -0.000005078397 0.124599359339 0.001660901459 -0.003604794552
32 -0.000004366759 0.115945361785 0.001557512865 -0.003224612439
33 -0.000003420136 0.111181581447 0.001369882894 -0.002758996207
34 -0.000002513786 0.109191625961 0.001134755696 -0.002306179343
35 -0.000001763532 0.111288476315 0.000867432129 -0.001919901920
36 -0.000001204236 0.119192929024 0.000579793250 -0.001618899536
37 -0.000000695113 0.125455684563 0.000379946597 -0.001211562457
38 -0.000000240200 -0.260851975270 0.000145496914 0.000805704648
39 -0.000000145311 0.066737871954 0.000482407394 -0.000262736499
40 0.000000000000 0.000000000000 0.000000000000 0.000000000000


Reduced L root no. 2
ITER EVAL EVEC(1) EVEC(2) EVEC(3)
----------------------------------------------------------------------------
1 -0.245901441367 -0.000083322075 0.999999131369 0.000915776394
2 0.080867618852 0.819222985042 -0.573445675034 -0.003259262058
3 -0.245923262733 -0.000149363558 0.999977246434 -0.001838001820
4 -0.254193418869 0.633157904619 0.774002654663 0.002694081662
5 -0.001340704088 0.952116957223 -0.079007880916 0.013368249852
6 -0.000737093052 0.995778946611 0.001959786527 -0.043690439124
7 -0.000048475775 0.989881969159 -0.005861547611 -0.012624769913
8 -0.000000553695 0.996602159701 0.000733211813 -0.000317166085
9 0.000000000000 0.000000000000 0.000000000000 0.000000000000
9 0.000000000000 0.000000000000 0.000000000000 0.000000000000
9 -0.000001931356 0.990848565971 0.001729531998 -0.001431757222
10 -0.000001176240 0.995532365176 0.001359494974 -0.000731045479
11 -0.000000223185 0.999571014273 0.000621929356 -0.000123680926
12 0.000000000000 0.000000000000 0.000000000000 0.000000000000
12 -0.000000674389 0.998418727302 -0.001098812723 -0.000518114977
13 -0.000000045210 0.998627688347 -0.000295504088 -0.000029514693
14 0.000000000000 0.000000000000 0.000000000000 0.000000000000
14 -0.000000877259 0.997628137866 -0.001204547646 -0.000780424053
15 -0.000000007747 0.999207902274 0.000117128492 -0.000013370674
16 0.000000000000 0.000000000000 0.000000000000 0.000000000000
16 -0.000001222007 0.982252403036 0.001340954761 -0.001143465320
17 -0.000000468264 0.997213884543 0.000913910862 -0.000478619080
18 -0.000001045304 0.996639390610 -0.001237380260 -0.001059754050
19 -0.000000416389 0.996883032486 0.000853862758 -0.000484904977
20 -0.000001445669 0.994828576265 -0.001303509514 -0.001536756903
21 -0.000000034977 0.998257496108 -0.000264516607 0.000028881694
22 -0.000004678218 0.994059816940 0.000465834071 -0.004293553803
23 -0.000000370577 0.996378332976 0.000776710625 -0.000542467033
24 -0.000002806653 0.992511053420 -0.000973482526 -0.003033665316
25 -0.000000244678 0.996303947410 0.000623899885 -0.000466506095
26 -0.000004102303 0.999826414100 -0.000883895752 -0.003937394679
27 -0.000000001391 0.999706597744 0.000049344210 -0.000027318508
28 0.000000000000 0.000000000000 0.000000000000 0.000000000000
28 0.000000000000 0.000000000000 0.000000000000 0.000000000000
28 -0.000000001078 0.948783566993 -0.000044038291 0.000020192448
29 -0.000000187898 0.973006186086 -0.000580932082 -0.000341161126
30 -0.000000243654 0.989346872278 -0.000616176266 -0.000552850926
31 -0.000000236372 0.992206522138 -0.000603008241 -0.000586872641
32 -0.000000212131 0.993255060315 -0.000577164621 -0.000580840012
33 -0.000000177985 0.993799670663 -0.000541479818 -0.000546148477
34 -0.000000137882 0.994020381508 -0.000496846252 -0.000481185748
35 -0.000000096998 0.993787903731 -0.000443935590 -0.000387621503
36 -0.000000061408 0.992870953303 -0.000383713506 -0.000276439908
37 -0.000000038780 0.992099124372 -0.000327069492 -0.000198859442
38 -0.000000013066 0.965378751236 -0.000205464528 -0.000031373324
39 -0.000000025258 0.997770492870 -0.000180899618 -0.000262355152
40 0.000000000000 0.000000000000 0.000000000000 0.000000000000


Reduced L root no. 3
ITER EVAL EVEC(1) EVEC(2) EVEC(3)
----------------------------------------------------------------------------
1 0.000035844675 0.999855955106 0.000065636582 0.001920375502
2 0.146950600864 -0.004410470781 0.003783061951 -0.636922104382
3 -0.004808373110 0.998411125209 -0.000146843972 0.000745400417
4 0.170050695138 0.774013330748 -0.633165684503 -0.000826994662
5 0.185166139310 0.087919573300 0.995975076666 0.002207530173
6 0.228303235757 -0.048395321142 0.757938801708 -0.596814181712
7 0.241508469059 0.014987474243 0.569830422168 0.820860466482
8 0.198617427437 0.007212075010 0.083269404731 0.986172598381
9 0.000000000000 0.000000000000 0.000000000000 0.000000000000
9 0.000000000000 0.000000000000 0.000000000000 0.000000000000
9 0.229410222604 0.006083919046 -0.077984969064 0.994137296935
10 0.231290493808 0.005726025681 0.191240646854 0.977770621865
11 0.255284694047 0.004928069648 0.054005227220 0.984685812595
12 0.000000000000 0.000000000000 0.000000000000 0.000000000000
12 0.247287757361 0.005026466263 -0.036137304267 0.996008814447
13 0.248054093512 0.004878789198 -0.025702003509 0.995354949342
14 0.000000000000 0.000000000000 0.000000000000 0.000000000000
14 0.246535090541 0.004910895526 -0.024014472489 0.997856210393
15 0.249367790759 0.004749334395 -0.010857838412 0.992835049134
16 0.000000000000 0.000000000000 0.000000000000 0.000000000000
16 0.245774894723 0.004850248447 0.019102596776 0.999611095482
17 0.246451179334 0.004805701283 -0.001377814359 0.998305272062
18 0.246143975930 0.004787160219 -0.021495916205 0.998699278331
19 0.246336668806 0.004709683094 -0.005809606045 0.998542454728
20 0.245860087274 0.004685426326 -0.027667071889 0.999107071196
21 0.247210526714 0.004528901875 -0.011499280673 0.996940586731
22 0.245669393988 0.004574240494 0.036621287880 0.999312240760
23 0.246157474760 0.004309359443 0.003561442577 0.999004497948
24 0.245678155369 0.004268740420 -0.050416224230 0.998656400877
25 0.246115991555 0.003984027504 -0.005450059182 0.999143498893
26 0.245713383001 0.003930136079 0.061706372731 0.998079343563
27 0.246416951113 0.001142803172 -0.003921206111 0.998929391625
28 0.000000000000 0.000000000000 0.000000000000 0.000000000000
28 0.000000000000 0.000000000000 0.000000000000 0.000000000000
28 0.245888296776 0.001138157359 0.039870232612 0.999196338963
29 0.245886807428 0.001138483676 0.068405042268 0.997650077416
30 0.245884517200 0.001124127726 0.109373395376 0.993991987596
31 0.245881538740 0.001080401200 0.158264334156 0.987388204798
32 0.245878389827 0.001013253766 0.216386724588 0.976299883403
33 0.245875461820 0.000924254456 0.285075376226 0.958497763581
34 0.245873019861 0.000814837816 0.365514277975 0.930798331019
35 0.245871257821 0.000690237350 0.458400040602 0.888737770581
36 0.245869848457 0.000561895187 0.563336608297 0.826217570786
37 0.245868099764 0.000444440565 0.677806707973 0.735227632282
38 0.245899485596 0.000333680783 0.795564828229 0.605857817567
39 0.245888533297 0.000308432739 0.652370220270 0.757891356310
40 0.000000000000 0.000000000000 0.000000000000 0.000000000000


.-----------------------------------.
| --- Final results from SIRIUS --- |
`-----------------------------------'


@ Spin multiplicity: 2
@ Spatial symmetry: 1 ( irrep Ag in D2h )
@ Total charge of molecule: 0
@ State number: 2

@ Final MCSCF energy: -7.432425036887 (NOT CONVERGED!)
@ Nuclear repulsion: 0.000000000000
@ Electronic energy: -7.432425036887

@ Final gradient norm: 0.000137569770


Date and time (Darwin) : Sat Sep 15 09:53:40 2018
Host name :
Occupancies of natural orbitals
-------------------------------

Symmetry 1 ( Ag ) -- Total occupation in this symmetry is 3.000000000

2.000000000 0.000000000 1.000000000

Symmetry 2 ( B3u) -- Total occupation in this symmetry is 0.000000000

0.000000000 0.000000000

Symmetry 3 ( B2u) -- Total occupation in this symmetry is 0.000000000

0.000000000 0.000000000

Symmetry 4 ( B1g) -- No occupied orbitals

Symmetry 5 ( B1u) -- Total occupation in this symmetry is 0.000000000

0.000000000 0.000000000

Symmetry 6 ( B2g) -- No occupied orbitals

Symmetry 7 ( B3g) -- No occupied orbitals

Symmetry 8 ( Au ) -- No occupied orbitals

File label for MO orbitals: 15Sep18 (CNOORB)

(Only coefficients > 0.0100 are printed.)

Molecular orbitals for symmetry species 1 (Ag )
------------------------------------------------

Orbital 1 2 3 4 5 6 7
1 Li 0:1s 1.0009 0.5321 0.0012 -0.5893 0.0000 -0.0000 0.0000
2 Li 0:1s 0.0010 1.6960 0.5360 -1.5788 0.0000 -0.0000 0.0000
3 Li 0:1s -0.0052 -1.5132 0.5093 2.9218 0.0000 0.0000 0.0000
4 Li 0:1s 0.0015 -0.2708 0.0082 -1.9233 0.0000 -0.0000 0.0000
5 Li 0:3d0 -0.0000 0.0000 0.0000 -0.0000 0.0000 -0.5497 0.0000
6 Li 0:3d2+ 0.0000 0.0000 0.0000 0.0000 -0.5497 0.0000 -2.0604
7 Li 0:3d0 0.0000 -0.0000 -0.0000 0.0000 0.0000 1.4517 0.0000
8 Li 0:3d2+ 0.0000 0.0000 0.0000 0.0000 1.4517 0.0000 1.5621

Orbital 8
5 Li 0:3d0 -2.0604
7 Li 0:3d0 1.5621

Molecular orbitals for symmetry species 2 (B3u)
------------------------------------------------

Orbital 1 2 3
1 Li 0:2px 0.6002 -0.4153 -1.1158
2 Li 0:2px 0.4997 -0.0174 1.4997
3 Li 0:2px 0.0182 0.9897 -0.7646

Molecular orbitals for symmetry species 3 (B2u)
------------------------------------------------

Orbital 1 2 3
1 Li 0:2py 0.6002 -0.4153 -1.1158
2 Li 0:2py 0.4997 -0.0174 1.4997
3 Li 0:2py 0.0182 0.9897 -0.7646

Molecular orbitals for symmetry species 4 (B1g)
------------------------------------------------

Orbital 1 2
1 Li 0:3d2- -0.5497 -2.0604
2 Li 0:3d2- 1.4517 1.5621

Molecular orbitals for symmetry species 5 (B1u)
------------------------------------------------

Orbital 1 2 3
1 Li 0:2pz 0.6002 -0.4153 -1.1158
2 Li 0:2pz 0.4997 -0.0174 1.4997
3 Li 0:2pz 0.0182 0.9897 -0.7646

Molecular orbitals for symmetry species 6 (B2g)
------------------------------------------------

Orbital 1 2
1 Li 0:3d1+ -0.5497 -2.0604
2 Li 0:3d1+ 1.4517 1.5621

Molecular orbitals for symmetry species 7 (B3g)
------------------------------------------------

Orbital 1 2
1 Li 0:3d1- -0.5497 -2.0604
2 Li 0:3d1- 1.4517 1.5621

Printout of CI-coefficients abs greater than 0.10000 for root 2
*** NOTE: this root is the reference state ***

Printout of coefficients in interval 3.1623E-01 to 1.0000E+00
===============================================================

Coefficient of CSF no. 2 is 1.00000000 1.00000000E+00
Orbital 2
Spin coupling 1

Printout of coefficients in interval 1.0000E-01 to 3.1623E-01
===============================================================
( no coefficients )

Norm of printed CI vector .. 1.00000000

Magnitude of CI coefficients
============================
( Ranges are relative to norm of vector : 1.00E+00 )

10- 1 to 10- 0 1 0.10000000E+01 1.0000000000
Number of coefficients less than 10^-11 times norm is 1

Total CPU time used in SIRIUS : 0.76 seconds
Total wall time used in SIRIUS : 0.79 seconds


Date and time (Darwin) : Sat Sep 15 09:53:40 2018
Host name :

NOTE: 2 warnings have been issued.
Check output, result, and error files for "WARNING".


.---------------------------------------.
| End of Wave Function Section (SIRIUS) |
`---------------------------------------'


@ - DALTON aborted because wave function not converged!

--- SEVERE ERROR, PROGRAM WILL BE ABORTED ---
Date and time (Darwin) : Sat Sep 15 09:53:40 2018
Host name :

@ MPI MASTER, node no.: 0
@ Reason: DALTON aborted because wave function not converged

Total CPU time used in DALTON: 0.79 seconds
Total wall time used in DALTON: 0.82 seconds


QTRACE dump of internal trace stack

========================
level module
========================
3 SIRIUS
2 DALTON
1 DALTON main
========================

I will investigate the possibilities and matches when I am free.
Last edited by xiongyan21 on 15 Sep 2018, 16:44, edited 1 time in total.

hjaaj
Posts: 282
Joined: 27 Jun 2013, 18:44
First name(s): Hans Jørgen
Middle name(s): Aagaard
Last name(s): Jensen
Affiliation: Universith of Southern Denmark
Country: Denmark

Re: mcscf CAS active space

Post by hjaaj » 15 Sep 2018, 15:38

First, PLEASE do not paste output into the text field, add the output file as an attachment!

Root number 3 does not work because the number of configurations is 2. I have just programmed that Dalton aborts if this happens.

The MCSCF in Dalton is state specific, and this means that you need to run separate calculations for each desired state. (And the state number has to be inside the CI space.) In your case - the Li atom - I would simply run a full CI after the HF instead of MCSCF and get all the desired roots. After all, there are only 3 electrons in Li, and the full CI space is not particularly big. Note that for bigger cases, the LUCITA module is much more efficient for full CI and the standard .CI module.

A scientific comment: Note that 3s and 4s will not be particularly accurate with aug-cc-pVDZ (and 5s is not covered at all because aug-cc-pVDZ has only 4 s-orbitals). I would add Rydberg orbitals with the ".CM FUN" option to get a good description of the Rydberg states.

xiongyan21
Posts: 142
Joined: 24 Sep 2014, 08:36
First name(s): yan
Last name(s): xiong
Affiliation: CENTRAL CHINA NORMAL UNIVERSITY
Country: China

Re: mcscf CAS active space

Post by xiongyan21 » 15 Sep 2018, 16:40

Dear Prof. Jensen
That will be great.
In GAMESS two or more state-averaged MCSCF wavefunction coupling matrix element calculation is a basic function.
Very Best Regards!
Last edited by xiongyan21 on 10 Oct 2018, 05:23, edited 9 times in total.

greifsw
Posts: 11
Joined: 28 May 2016, 21:05
First name(s): Amit
Last name(s): Sharma
Affiliation: Wright State University
Country: United States

Re: mcscf CAS active space

Post by greifsw » 17 Sep 2018, 16:19

Based on my previous attempt to setup CASSCF calculation for a simple atom, I tried one for He atom, nothing fancy, just He ground state (input attached). I get the following error
SIRSET-ERROR, NASHT .eq. 1 is only implemented
for one active electron (doublet)

All I am doing is HF for He 1s2 electronic configuration, stating that 1 (Ag) orbital is doubly occupied and then at MCSCF level setting the 1s orbital as active with 2 electrons in them. I expect the HF energy to be same as MCSCF energy. Can this calculation be done with Dalton?

If I increase the CAS space to the following
.CAS SPACE
2 0 0 0 0 0 0 0
the calculation finishes without error (output attached) but the energy does seem right. Possibly I am missing something fundamental about DALTON. Can someone point to the error in the input.
Attachments
tmp_he.out
(45.17 KiB) Downloaded 8 times
he.dal
(327 Bytes) Downloaded 5 times

xiongyan21
Posts: 142
Joined: 24 Sep 2014, 08:36
First name(s): yan
Last name(s): xiong
Affiliation: CENTRAL CHINA NORMAL UNIVERSITY
Country: China

Re: mcscf CAS active space

Post by xiongyan21 » 19 Sep 2018, 06:38

Your he.dal with .cas= 1 0 0 0 0 0 0 0 cannot work, and the error is "*** ERROR *** input inconsistent (SIRSET)..."
...
| Starting in Wave Function Section (SIRIUS) |
`--------------------------------------------'


*** Output from Huckel module :

Using EWMO model: T
Using EHT model: F
Number of Huckel orbitals each symmetry: 1 0 0 0 0 0 0 0

EWMO - Energy Weighted Maximum Overlap - is a Huckel type method,
which normally is better than Extended Huckel Theory.
Reference: Linderberg and Ohrn, Propagators in Quantum Chemistry (Wiley, 1973)

Huckel EWMO eigenvalues for symmetry : 1
-0.918000

SIRSET-ERROR, NASHT .eq. 1 is only implemented
for one active electron (doublet)

**********************************************************************
*SIRIUS* a direct, restricted step, second order MCSCF program *
**********************************************************************


Date and time (Darwin) : Wed Sep 19 13:36:32 2018
Host name :
Title lines from ".mol" input file:
He comment line 1
using basis comment line 2

Print level on unit LUPRI = 2 is 0
Print level on unit LUW4 = 2 is 5

@ MC-SCF optimization.
@ Type: complete active space calculation (CAS).
Fock matrices are calculated directly and in parallel without use of integrals on disk.

Wave function specification
============================
@ Wave function type --- MC-SCF ---
@ Number of closed shell electrons 0
@ Number of electrons in active shells 2
@ Total charge of the molecule 0

@ Spin multiplicity and 2 M_S 1 0
@ Total number of symmetries 8 (point group: D2h)
@ Reference state symmetry 1 (irrep name : Ag )

Orbital specifications
======================
@ Abelian symmetry species All | 1 2 3 4 5 6 7 8
@ | Ag B3u B2u B1g B1u B2g B3g Au
--- | --- --- --- --- --- --- --- ---
@ Inactive orbitals 0 | 0 0 0 0 0 0 0 0
@ Active orbitals 1 | 1 0 0 0 0 0 0 0
@ Secondary orbitals 22 | 7 3 3 2 3 2 2 0
@ Total number of orbitals 23 | 8 3 3 2 3 2 2 0
@ Number of basis functions 23 | 8 3 3 2 3 2 2 0

-- Initial occupation of symmetries is determined from user input.
-- Initial occupation of symmetries is :
@ Occupied SCF orbitals 1 | 1 0 0 0 0 0 0 0

Optimization information
========================
@ Number of configurations 1
@ Number of orbital rotations 7
------------------------------------------
@ Total number of variables 8

Maximum number of macro iterations 25
Maximum number of micro iterations 600
Threshold for MCSCF gradient 1.00D-07
Number of initial trial vectors 1
Number of initial CI iterations 3
Number of simultaneous trial vectors 1

@ This calculation converges to the lowest state for the specified symmetry and spin species.

Maximum number of NEO/NR iterations 24



SIRSET - FATAL ERRORS DETECTED, SEE ABOVE


--- SEVERE ERROR, PROGRAM WILL BE ABORTED ---
Date and time (Darwin) : Wed Sep 19 13:36:32 2018
Host name :
@ MPI MASTER, node no.: 0
@ Reason: *** ERROR *** input inconsistent (SIRSET)

Total CPU time used in DALTON: 0.03 seconds
Total wall time used in DALTON: 0.05 seconds


QTRACE dump of internal trace stack

========================
level module
========================
7 SIRSET
6 SIRRDI
5 SIRINP
4 SIRCTL
3 SIRIUS
2 DALTON
1 DALTON main
========================

hjaaj
Posts: 282
Joined: 27 Jun 2013, 18:44
First name(s): Hans Jørgen
Middle name(s): Aagaard
Last name(s): Jensen
Affiliation: Universith of Southern Denmark
Country: Denmark

Re: mcscf CAS active space

Post by hjaaj » 26 Oct 2018, 18:52

No, that calculation (running He Hartree-Fock in the MCSCF code) cannot be done with Dalton.

Post Reply

Who is online

Users browsing this forum: No registered users and 4 guests